
ABSTRACT: Stream ordering is a useful property of every river
network, having a wide range of applications. A method for deter-
mining stream orders that quickly and easily addresses various
network topologies and magnitudes is therefore needed. This paper
introduces a general recursive stream ordering framework for vec-
tor hydrography. It also presents a linear, O(n), stream ordering
procedure for braided river networks, which is a major improve-
ment to the existing quadratic, O(n2), procedure. The discussion
includes results and interpretations, and the appendices present
procedure pseudocodes and thorough line by line explanations.
(KEY TERMS: Strahler stream order; geographic information sys-
tem; recursive algorithm; software; drainage; braided networks.)
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INTRODUCTION

This paper describes an algorithmic framework
that was developed to create the fastest possible pro-
cedure for vector stream network ordering using the
Strahler method. In the process of upgrading the vec-
tored hydrographic layer of Israel’s National Geo-
graphic Information Systems (GIS) database
(prepared by the Survey of Israel) it was found that
the stream ordering module became too time consum-
ing. The detailed hydrographic data were required for 

a hydrological and chemical fate model that was inte-
grated into a GIS of the Upper Catchment of the Jor-
dan River.

Stream ordering helps to create a hierarchy for
streamflow networks, which usually consist of thou-
sands of tributaries. It is applied in various types of
streamflow models [e.g., LASCAM (Sivapalan and
Viney, 1994), MIKE 11 (DHI Software, 2003) and
Eagle Point Watershed Modeling (Eagle Point Soft-
ware Corporation, 2004]. In particular, it may be used
for hydrological problems such as identification of
areas vulnerable to flooding and in studies of chemi-
cal and ecological systems of drainage basins (Cole
and Wells, 2003).

Among several stream ordering methods such as
those of Horton, Strahler, Scheidegger, Woldenberg,
and Shreve (Doornkamp and King, 1971), only the
methods developed by Strahler and Shreve are widely
used today. In this work, the method developed by
Strahler was used. Strahler's stream ordering method
(Strahler, 1957) assigns an order of k = 1 to all
streams that have no tributaries. Thereafter, proceed-
ing downstream, when two (or more) streams of the
same order k meet, they form a stream with an order
of k + 1. However, when a stream of order k is met by
one of a lower order, no change occurs in the down-
stream order. Figure 1a demonstrates a simple
stream network with Strahler orders.
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DATA PREPARATION

An ‘arc’ in GIS is defined as an ordered string 
of vertices (x, y coordinate pairs) that begin at one 
location and end at another. Connecting the arc’s ver-
tices creates a line. The vertices at each endpoint of
an arc are called ‘nodes.’ A ‘pour point’ is defined as a
selected endpoint along the streamflow network, into
which that network flows.

To implement a stream ordering algorithm, the
stream input data have to meet several criteria. First,
all arcs in the processed stream network must be con-
nected, so that a continuous path to the pour point
can be obtained. Second, all arcs and nodes of the net-
work must have unique identification (ID) numbers.
This is a built-in property of GIS software, which
assigns unique identifiers to different geometric fea-
tures belonging to a common layer. Also, the network
must maintain an ‘arc-node topology’ (representing
connectivity between arcs and nodes), meaning that
each arc should hold the ID numbers of its endpoint
nodes. The network’s pour point must be determined
beforehand, as it is also used as an input for the
ordering procedure.

In practice, only the network’s arc-node topology is
required for algorithm input, since its spatial repre-
sentation plays no role in stream ordering patterns.
This provides the option of applying an ordering pro-
cedure unrelated to burdensome graphics manipula-
tions, dramatically increasing the procedure's overall
execution time.

STRAHLER STREAM ORDERING
ALGORITHMIC FRAMEWORK

According to its definition, it is evident that
Strahler’s stream order has a recursive nature, since
each arc’s order depends on the orders of its inflow
arcs. This property has been used in various GIS tools
that provide stream ordering (Lu et al., 1996; Tar-
boton, 2000, 2002). However, those are ready to use
software packages, which do not reveal the actual
algorithm behind them. Hence, a formal and thorough
algorithmic definition of the recursive stream order
computation framework is of interest.

The proposed algorithmic framework can be easily
implemented by hydrologists. It provides a ‘skeleton’
for additional stream network computations and
schemes such as Strahler segments (presented in this
section) and braided networks (presented in the fol-
lowing section). In this section, such a framework is
presented, which will be further developed into an
innovative solution for dealing with braided stream
networks.

To perform stream network analysis the network
could be regarded simply as a graph (either directed
or undirected, depending on the procedure's applica-
tion). Graphs are common data structures, and as
such can be analyzed by various recursive traversal
algorithms, possessing good running time properties.
Network structure in GIS could be viewed as a graph,
where nodes are also graph ‘nodes’ and arcs are graph
‘edges.’ For stream networks in particular, statistical
graph theory was used (e.g., Scheidegger, 1968, to
describe Horton’s law of stream numbers).

Each graph can be represented either by an adja-
cency matrix or a set of adjacency lists. An adjacency
matrix contains an equal number of rows and
columns according to the number of graph nodes.
Every edge from node i to node j is denoted by the
Boolean value of true at the matrix location (i, j), and,
in the case of an undirected graph also at the location
(j, i). All other matrix ‘cells’ are assigned the value of
false. This representation is good for richly populated
graphs, where an edge is present for almost every
node pair. Alternatively, adjacency lists hold a list of
adjacent nodes for each graph node (i.e., a list of
nodes to which there is an edge from that specific
node). Thus, a list entry exists only for actual edges
present in the graph. The second notation (with slight
modifications) was preferred in this case because of
the sparsely populated nature of stream networks.

Since each network’s pour point is determined prior
to applying stream order and the presented frame-
work deals with simple nonbraided networks (braided
networks are defined in the following section), the
network could be regarded as an undirected graph. As
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Figure 1a. Stream Network With Strahler Orders.



visiting and ordering arcs (i.e., edges) and not nodes
are of interest, adjacency lists that contain adjacent
(flowing both in and out) arcs for each stream node
were used. The complete algorithm pseudocode as
well as a thorough line by line description is given in
Appendix A.

An additional network property that is also derived
during this recursive river network traversal is the
Strahler river segment (Scheidegger, 1970). A river
segment is a continuous path within a network bear-
ing the same stream order. Thus, every network has a
set of unique segments for each stream order. Consid-
er, for example, the stream network depicted in Fig-
ure 1b. This network contains arcs with Orders 1
through 3. It has seven river segments of Order 1, two
river segments of Order 2 (one depicted with dense
round dots and another with a dashed line), and one
segment of Order 3 (depicted with a dash/dot line).
The general rule is that when arcs of two (or more)
streams meet at a node, their respective river seg-
ments (regardless of their order) come to an end, and
a new downstream segment of a greater order is initi-
ated. The exception is in the case where only one arc
bears the maximal stream order among those
streams. In such a case, the downstream arc (into
which all upstreams flow) does not change its order
and consequently continues the river segment of the
upstream arc bearing the same maximal stream
order.

The stream ordering procedure assigns each arc 
an ID of its river segment, which is unique within a

certain stream order of the processed network. For
instance, if a network has five river segments of
Order 3, then every arc having the Order 3 will be
assigned a segment ID from 1 to 5. If that network
also has eight river segments of Order 2, then every
arc with Order 2 will be assigned a segment ID from 1
to 8. In this way, the identification of a unique river
segment of any order in the network can be performed
using a composite ‘order segment ID’ key.

The overall running time of the presented frame-
work algorithm is a linear function of the number of
arcs n in the network, O(n), which is certainly expect-
ed from this kind of a recursive network (graph, tree)
traversal. Note that the particular computed property
– Strahler segments – did not add to the traversal
time, so both the stream order and the segments are
obtained as a linear function of the number of arcs.

STRAHLER STREAM ORDERING ALGORITHM
FOR BRAIDED RIVER NETWORKS

After the general recursive stream ordering frame-
work was completed, it could be used as a ‘skeleton’
for independently developed functions, intended to
deal with more complex stream networks, such as the
braided networks.

In a braided network, a stream can split into a
number of downstream flows, and these flows can
merge again further downstream. Alternatively, there
can be ‘channels’ linking different ‘branches’ of the
same network. All these and similar cases introduce
cycles in the respective undirected graphs represent-
ing them.

Consider the braided river network depicted in Fig-
ure 2 (a modified version of the network in Figure 1).
If the arrows are ignored, this network can be regard-
ed as an undirected graph, and a number of braided
elements can easily be recognized as they create
cycles in the graph. However, the stream order along
these elements does not change in most cases since
they originate from the same upstream arc. For
instance, all arcs between nodes a and b have the
stream Order of 1, because they all come from the
same first order arc.

Several methods to analyze such cases, while main-
taining the running time properties of the nonbraided
(framework) solution, were considered. For example,
the biconnectivity mechanism (Aho et al., 1974) was
employed. Such a mechanism could be used to identi-
fy biconnected components in the undirected graph,
which in this case are the braided parts of the stream
network. After that, it has been postulated that each
biconnected component has the same stream order for
all its arcs. However, this proved to be true only for
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Figure 1b. Stream Network With Orders and Segments.



biconnected components ‘bounded’ by a maximum of
two articulation points (as in the above mentioned
example, between nodes a and b). If an arc exists that
‘joins’ the component at an additional articulation
point (e.g., Node d, in addition to Nodes c and e), then
only the component’s upstream parts (for that node)
reliably maintain their stream order, while the down-
stream ones are affected by the joining arc and can
change their order (as is the case of arc de).

Consequently, the braided part cannot be treated
as one unit for stream ordering. Therefore, the conclu-
sion is that braided networks must be treated as
directed graphs. This introduces another data prepa-
ration activity ascertaining that all arcs appear in the
network with correct downstream direction depicted
in their from nodes and to nodes.

In the course of developing the new stream order-
ing procedure, the principle of Lanfear’s algorithm
(Lanfear, 1990) was used. Lanfear suggested an itera-
tive ordering procedure that could also deal with
braided networks. In this procedure another property
was added to each arc, containing the upstream node
at which the stream order value of the arc originated.
Considering this new property, the arc’s order does
not follow the general rule (described in the Introduc-
tion) and does not increase if all arcs of the same
maximal order originate from the same node. The
complete braided network stream ordering algorithm,
built upon the previously described framework, is
given in Appendix B. This braided algorithm also has
a linear running time, similar to the simpler case
described earlier.

DISCUSSION AND CONCLUSIONS

The proposed general recursive stream ordering
framework possesses good linear running time prop-
erties. By its nature, it resembles the well known and
widely used Depth First Search (DFS) graph traversal
algorithm first introduced by Tarjan (1972). The DFS
algorithm is also recursive, and it also accesses the
graph’s furthermost nodes (or, in this case, those far-
thest upstream), reachable from a certain node before
proceeding to that node’s ‘siblings.’ Eventually, the
recursive traversing of a stream network, starting at
its pour point, can be generalized and reused for other
stream network properties whose definitions are also
recursive, as in the case of Strahler’s stream order
(e.g., a Shreve stream ordering algorithm). Conse-
quently, the suggested framework can be easily adapt-
ed for those properties as well.

Despite the resemblance to DFS, it has been shown
that it is useful to have a clearly and formally defined
algorithmic framework, thoroughly describing an
allegedly simple task such as a recursive stream net-
work traversal. Based on this framework, additional
tasks could be easily introduced (e.g., Strahler seg-
ments) while maintaining the overall integrity and
running time.

This framework also allowed the development of a
faster linear procedure for braided networks stream
ordering (see previous section). Two tests were per-
formed to compare between Lanfear’s algorithm and
the proposed recursive braided procedure. For the
first test, a tool developed by Hornby (2003), who
implemented Lanfear’s algorithm, was used. The run-
ning time for a 22,000 arc network was very long, just
as Hornby stated: “Large networks (1000+ polylines)
can take a long time to compute and may need to be
run overnight.” The second test was more objective.
To fairly evaluate the two procedures, both were
coded in the same environment, using the same pro-
gramming language and identical data structures
(i.e., dictionaries, lists, arrays, etc.), and run on the
same machine. While processing the same 22,000 arc
network, it took Lanfear's algorithm more than 220
seconds to complete the ordering, while the suggested
new recursive algorithm reached satisfactory results
for the same network within 22 seconds. When anoth-
er 26,000 arc  network was processed, the suggested
algorithm solved it in 26 seconds, whereas Lanfear’s
algorithm took 600 seconds. The results clearly show
the linear running time nature of the suggested algo-
rithm and the fast growing nature of Lanfear’s. After
closely analyzing both algorithms it was found that
the running time of Lanfear’s algorithm depends
asymptotically on n2 [O(n2)], which is certainly less
efficient and more time consuming than the proposed
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Figure 2. Braided Stream Network With Orders.



linear procedure. The suggested preprocessing proce-
dures (which prepare the required data structures)
are also linear, and in both mentioned examples they
took about five seconds to complete. Quality control
for the resulting stream ordering was performed visu-
ally by symbolizing the arcs according to their stream
order, revealing that all arcs were attributed by the
appropriate stream order. The resulting stream
orders calculated by the suggested algorithm were
also compared to those assigned by Lanfear and found
to be identical. 

To implement algorithms based on the proposed
framework, the selected programming language needs
to support recursive procedure calls. All the ‘dictio-
naries’ mentioned above are actually known as asso-
ciative arrays or hashes. These are data structures
that are not sequential and continuous like regular
arrays and that can use noninteger values for index-
ing. Most programming languages in use today have
some kind of representation for these data structures.

The proposed procedure obtained two important
results. First, instead of closed and completed soft-
ware implementations, which are in this case limited
and awkward, a general, effective, and efficient recur-
sive stream ordering algorithm is formalized and
thoroughly described. Second, the existing stream
ordering procedure for braided stream networks was
significantly improved, from nearly quadratic to lin-
ear running time.

APPENDIX A
STRAHLER RECURSIVE STREAM ORDERING

ALGORITHM FRAMEWORK
(with an additional property of Strahler segments)

Note: Throughout Appendices A and B, all procedure
names, data structures, and variables start with capi-
tals, while pseudocode keywords (like if or do) start
with small letters and appear in bold. All data struc-
tures and variables that are global (external) to the 

procedure (i.e., maintain the same copy over the
recursive calls) are shown in italic.

The algorithm employs a short preprocessing pro-
cedure, which builds node and arc adjacency ‘dictio-
naries,’ which are sets of adjacency lists compiled for
each node and arc in the network. This procedure
assumes that the input data is organized as described
above in the Data Preparation section. Table A1
describes the preprocessing pseudocode for the adja-
cency dictionaries.

The MakeDictionaries procedure receives a stream
network as its argument and consists of a loop, which
scans all arcs in the network (Lines 1-4). Two dictio-
naries are updated at every loop step. At the end of
the procedure, the NodesPerArc dictionary contains a
list of arc endpoint IDs (Arc’s FromNodeID and Arc’s
ToNodeID) for every network arc, while the 
ArcsPerNode dictionary contains a list of adjacent
arcs (regardless of direction) for every network node.
The running time of this procedure is linear, O(n)
(where n is the number of arcs in the network) since
every arc is processed only once.

The ordering procedure uses the above dictionaries
to access the appropriate nodes and arcs at each
recursion level. It starts with the ‘pour arc’ (i.e., the
arc directly connected to the pour point) and recur-
sively scans its upstream arcs, while deriving their
stream orders. After that, it determines the pour arc's
order according to its upstream orders. The stream
ordering algorithm pseudocode is presented in Table
A2.

The StreamOrdering procedure assumes that an
empty dictionary (global to the procedure itself)
named StreamOrders has been created prior to execu-
tion. It receives two arguments: ArcID – containing
the ID of the current pour arc and DirectionNodeID –
containing the ID of the pour arc’s node in the
upstream direction. (This is needed due to the use of
an undirected graph for stream network representa-
tion, since it is eventually necessary to ‘guide’ the 
procedure to follow the arc upstream and not down-
stream.) The first two lines include the recursion’s 
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TABLE A1. MakeDictionaries Preprocessing Procedure.

MakeDictionaries(Network)

1 for each Arc ∈ Network

2 do NodesPerArc[Arc’s ID] ← (Arc’s FromNodeID, Arc’s ToNodeID)

3 ArcsPerNode[Arc’s FromNodeID] ← ArcsPerNode[Arc’s FromNodeID] ∪ Arc’s ID

4 ArcsPerNode[Arc’s ToNodeID] ← ArcsPerNode[Arc’s ToNodeID] ∪ Arc’s ID



stop condition, which in this case is a source arc (i.e.,
an arc that has no arcs in its upstream direction). The
ArcsPerNode dictionary will contain only one arc for
the upstream direction node of a source arc – it would
be the source arc itself.

According to definition, a source arc is assigned a
stream order of 1. Lines 3 through 22 deal with non-
source arcs. Line 4 starts a loop over all upstream
direction node adjacent arcs. Line 5 makes sure that
the procedure does not follow the current arc (indexed
by ArcID) since it is also present in the direction
node’s adjacency list. Line 6 retrieves the endpoint
nodes of each upstream arc to determine the
upstream arc’s direction node ID at line 7. (The

NodesPerArc dictionary contains both the ID of the
current direction node and that of the upstream arc,
since both are the current arc’s endpoints.) After this
is determined, an appropriate recursive call is made
either at Line 8 or Line 9. In contrast with
StreamOrders, UpstreamOrders should be a local dic-
tionary, maintaining a separate copy for each recur-
sive call. After all upstream orders have been derived,
the algorithm determines the correct stream order of
the current arc at Lines 11 through 21. For this pur-
pose, it counts the number of upstream arcs having
the maximum stream order at Lines 13 through 18.
According to definition, an arc’s stream order is incre-
mented only if there is more than one upstream arc
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TABLE A2. StreamOrdering Procedure.

StreamOrdering(ArcID, DirectionNodeID)

1 if |ArcsPerNode[DirectionNodeID] | = 1

2 then StreamOrders[ArcID] ← 1

3 else

4 for each Arc ∈ ArcsPerNode[DirectionNodeID]

5 do if Arc ≠ ArcID

6 then (FromNodeID, ToNodeID) ← NodesPerArc[Arc]

7 if FromNodeID ≠ DirectionNodeID

8 then UpstreamOrders[Arc] ← StreamOrdering (Arc, FromNodeID)

9 else UpstreamOrders[Arc] ← StreamOrdering (Arc, ToNodeID)

10 SegmentIDs[ UpstreamOrders[Arc] ] ← SegmentIDs[ UpstreamOrders[Arc] ] + 1

11 MaxOrder ← 0 

12 MaxOrderCount ← 0 

13 for each Order ∈ UpstreamOrders 

14 do if Order > MaxOrder

15 then MaxOrder ← Order

16 MaxOrderCount ← 1

17 else if Order = MaxOrder

18 then MaxOrderCount ← MaxOrderCount + 1

19 if MaxOrderCount > 1

20 then StreamOrders[ArcID] ← MaxOrder + 1

21 else StreamOrders[ArcID] ← MaxOrder

22 SegmentIDs[StreamOrders[ArcID] ] ← SegmentIDs[StreamOrders[ArcID] ] – 1

23 Segments[ArcID] ← SegmentIDs[StreamOrders[ArcID] ]

24 return StreamOrders[ArcID]



with the maximal stream order. Otherwise the arc’s
stream order remains the same as the maximal order
of its upstream arcs. This logic is depicted at Lines 19
through 21.

To derive river segments, the stream ordering pro-
cedure assumes that a SegmentIDs array, global to
the procedure, has been created prior to execution.
This array will hold the currently used segment ID
for each stream order in the network, while incre-
menting these IDs each time a new segment of a cer-
tain order is started. Since the network’s maximum
stream order is not known in advance, one can either
create an array with a number of elements greater
than any possible stream network order, or, alterna-
tively, use some dynamic array data structure, which
inserts new elements as soon as they are accessed. In
any case, all SegmentIDs array elements should be
initialized to 0 or 1 (the first segment ID in each net-
work). Also, an empty Segments dictionary, global to
the procedure, is assumed to be created before execu-
tion of the procedure. This dictionary will hold the
actual segment ID for each network arc. Line 10
increments segment IDs of all upstream orders, since
those streams have reached a junction. Line 22 exe-
cutes in case the current arc maintains the order of
one of the upstream arcs (which is the only one with
maximum stream-order), bringing that specific seg-
ment ID back to where it was before execution of Line
10. Line 23 saves the derived segment ID for the cur-
rent arc in the Segments dictionary.

The StreamOrdering procedure returns the stream
order of the current arc (pointed by ArcID) up the
recursion tree. After all recursive calls have been
completed and the algorithm’s execution has ended,
the StreamOrders and Segments dictionaries will con-
tain the proper ordering and segment information for
each stream network arc.

The running time of the StreamOrdering procedure
is linear, O(n) (where n is the number of arcs in the
network), since it processes each network arc only
once, which is correct for both loops (Lines 4 through
10 and Lines 13 through 18).

APPENDIX B
STRAHLER RECURSIVE STREAM ORDERING

ALGORITHM FOR BRAIDED NETWORKS
(with an additional property of Strahler segments)

Since dealing with directed graphs now, the 
preprocessing procedure should create an
InflowingArcsPerNode dictionary (instead of an 
ArcsPerNode dictionary) that would contain for every
node only those arcs that flow into that same node. It
should also create a FromNodesPerArc dictionary
(instead of a NodesPerArc dictionary) to contain the
from- nodes of each arc. The modified preprocessing
procedure pseudocode is given in Table B1.

The stream ordering algorithm is also modified to
accommodate the possibility of braided network parts.
The Lanfear property of order originating node is
added. For this purpose, an OriginatingNode dictio-
nary is created prior to execution in the above prepro-
cessing procedure (Line 4) and initialized to the arcs
from- nodes. Each arc also now has a corresponding
value in a Visited dictionary, indicating whether this
arc has already been visited in some previously exe-
cuted recursive call or by its predecessor in the recur-
sion tree. This can happen due to the nature of the
braided network, where the same upstream arc could
be reached by a number of its downstream predeces-
sors. In this way, when the recursive calls return back
to the split node, the algorithm would know not to fol-
low upstream arcs already explored from ‘sibling’
paths. The modified stream ordering algorithm pseu-
docode is depicted in Table B2.

The ordering procedure assumes that a Visited dic-
tionary, global to the procedure, has been created
prior to execution and initialized to the Boolean value
of false for each arc. It also assumes (similar to the
case of a nonbraided ordering algorithm) that an
external dictionary (global to the procedure itself)
named StreamOrders has been created and initialized
to 0 for each arc. First, the procedure marks the cur-
rent arc as Visited, so that it will not be accessed more
than once. Lines 2 and 3 contain the recursion’s stop
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TABLE B1. MakeDictionaries Preprocessing Procedure (braided).

MakeDictionaries(Network)

1 for each Arc ∈ Network

2 do FromNodesPerArc[Arc's ID] ← Arc’s FromNodeID

3 InflowingArcsPerNode[Arc's ToNodeID] ← InflowingArcsPerNode[Arc’s ToNodeID] ∪ Arc’s ID

4 OriginatingNode[Arc's ID] ← Arc’s FromNodeID



condition, which is the case of an arc with no inflow-
ing arcs. Otherwise, Lines 5 through 8 would proceed
with a loop over all inflowing arcs. If an upstream arc
has not been visited yet (as determined at Line 6),
then Line 7 initiates a recursive procedure call, which
determines the upstream arc stream order. At this
point, the local UpstreamOrders dictionary contains
both the order and the order’s origin node. If the arc

has already been visited, its order is obtained from
the global StreamOrders dictionary. The order’s origin
node is obtained in both cases from the global 
OriginatingNode dictionary. Lines 11 through 18 find
the maximum order among upstream arcs and the
number of unique streams bearing that maximum
order. Line 15 saves the origin of the current 
maximum order. Lines 17 and 18 check whether an
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TABLE B2. StreamOrdering Procedure (braided).

StreamOrdering(ArcID)

1 Visited[ArcID] ← true

2 if | InflowingArcsPerNode[ FromNodesPerArc[ArcID] ] | = 0

3 then StreamOrders[ArcID] ← 1

4 else

5 for each Arc ∈ InflowingArcsPerNode[ FromNodesPerArc[ArcID] ]

6 do if not Visited[Arc]

7 then UpstreamOrders[Arc] ← (StreamOrdering(Arc), OriginatingNode[Arc])

8 else UpstreamOrders[Arc] ← (StreamOrders[Arc], OriginatingNode[Arc])

9 MaxOrder ← 0 

10 MaxOrderCount ← 0 

11 for each (Order, Origin) ∈ UpstreamOrders

12 do if Order > MaxOrder

13 then MaxOrder ← Order

14 MaxOrderCount ← 1   

15 MaxOrderOrigin ← Origin

16 else if Order = MaxOrder

17 then if Origin ≠ MaxOrderOrigin

18 then MaxOrderCount ← MaxOrderCount + 1

19 if MaxOrderCount > 1

20 then StreamOrders[ArcID] ← MaxOrder + 1

21 OriginatingNode[ArcID] ← FromNodesPerArc[ArcID]

22 else StreamOrders[ArcID] ← MaxOrder

23 OriginatingNode[ArcID] ← MaxOrderOrigin 

24 if SegmentIDsPerOriginatingNode[ OriginatingNode[ArcID] ] = nil

25 then SegmentIDs[ StreamOrders[ArcID] ] ← SegmentIDs[ StreamOrders[ArcID] ] + 1

26 SegmentIDsPerOriginatingNode[ OriginatingNode[ArcID] ] ← SegmentIDs[ StreamOrders[ArcID] ]

27 Segments[ArcID] ← SegmentIDsPerOriginatingNode[ OriginatingNode[ArcID] ]

28 return StreamOrders[ArcID]



additional upstream arc with the current maximum
order has a different origin and, in such case, the
maximum order count is increased. If all maximum
order upstream arcs come from the same origin, the
maximum order count stays at 1 as the loop termi-
nates. Lines 19 through 23 establish the current arc’s
order and its up to date order originating node prop-
erty. If the order is to be increased (maximum order
count equals 1), it is performed at Line 20, and Line
21 ‘re-initializes’ the arc’s order originating node to its
from- node (since the order changes here). Otherwise,
Line 22 sets the current arc’s order to the maximum
order of its upstream arc(s) and Line 23 sets the arc’s
order originating property to the order origin of its
maximum order upstream arc(s). The latter equals
the order origin of the arc’s single maximum order
upstream arc, or, in the case of a braided upstream
part – to that braided part’s order origin.

Strahler segment determination in this new braid-
ed version is very similar to the nonbraided one.
Here, also, an external SegmentIDs array keeps count
of the current segment ID for each encountered
stream order. However, for the actual segment ID
assignment, Lanfear ’s idea of order ’s origin (as
described above) is employed. When several streams
meet at a junction, they can either initiate a new seg-
ment (in case there is more than one stream with the
same maximum order of different origin) or else a pre-
vious segment can continue (in case there is only one
stream with the maximum order or more than one
stream with the maximum order but of the same ori-
gin). In the first case, the downstream arc order’s ori-
gin will also be ‘initialized’ to contain this arc’s from-
node, while in the latter case, the downstream arc
order’s origin will simply ‘repeat’ that of its upstream
order originating segment. This means that each
order originating node uniquely identifies each seg-
ment in the network, since a new segment is initiated
only when a new order’s origin is ‘initialized.’

This new approach appears in Lines 24 through 27.
The procedure now assumes that an empty external
dictionary SegmentIDsPerOriginatingNode has been
created prior to execution. Line 24 checks whether no
Strahler segment exists beginning with the order
originating node of the current arc. If this is the case,
then Line 25 generates a new segment ID for the cur-
rent stream order and Line 26 assigns that segment
ID to the current order originating node. Line 27
saves the appropriate segment ID for the current arc,
based on the arc’s order originating node.

The new braided version can also easily deal with
multiple drainage outlets. To address such cases, the
procedure must be executed separately for each pour
point (outlet) present in the network. When the proce-
dure first reaches the ‘split node,’ where the network
splits into multiple drainage paths, it will not follow

the other paths, since they do not flow into that split
node, but rather out of it. Then, in successive calls for
other outlets, the procedure can use already deter-
mined stream orders of the split node’s upstream arcs
instead of repeating that upstream part’s traversal.
Of course, all external dictionaries should be shared
among the calls to maintain consistency among them.
In any case, the aforementioned geomorphologists
intended to apply their ordering schemes for perma-
nent natural stream channels (Horton, 1945) and
most of the splits occur in man made situations like
channels or dams.

The new braided ordering procedure’s running time
is still linear (as its framework ‘skeleton’ is) because,
as stated, every network arc is accessed only once
during the procedure’s execution.

Some arcs can still remain unaccounted for during
execution of the ordering procedure. This will happen
to arcs with an incorrectly entered direction (for
example, the dashed arc in Figure 2). While dealing
with this arc, the procedure will determine that every
upstream arc of this arc is already Visited. In this
way, every such an arc will not be assigned a stream
order (leaving it at 0), giving the user a useful error
indication. If those incorrectly assigned arcs still need
to be ordered (in the same way – according to their
upstream arcs; e.g., so that the dashed arc in Figure 2
gets the order of 3), a simple iterative (nonrecursive)
procedure can easily scan those arcs and deal with
them. Such a procedure could be constructed with a
slightly modified nonrecursive part of the original
procedure (Lines 9 through 27) while substituting
locally obtained order and origin values (i.e., stored in
UpstreamOrders) by those already correctly derived
and saved in the StreamOrders and OriginatingNode
dictionaries by the original recursive procedure. This
kind of supplementary procedure is obviously also lin-
ear, so it will not change overall running time proper-
ties.
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